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BENDING OF RECTANGULAR PLATES WITH LARGE DEFLECTIONS

By SAMUEL LEvVY

SUMMARY

The solution of von Kdrmdn’s fundamental equations
for large deflections of plates is presented for the case of a
simply supported rectangular plate under combined edge
compression and lateral loading. Numerical solutions
are given for square plates and for rectangular plates with
a width-span ratio of 3:1. The effective widths under
edge compression are compared with effective widths
according to von Kdrmdn, Bengston, Marguerre, and Cox
and with experimental results by Ramberg, McPherson,
and Levy. The deflections for a square plate under
lateral pressure are compared with experimental and
theoretical results by Kaiser. It is found that the effective
widths agree closely with Marguerre's formula and with
the experimentally observed values and that the deflections
agree with the experimental results and with Kaiser’s work.

INTRODUCTION

In the design of thin plates that bend under lateral
and edge loading, formulas based on the Kirchhoff
theory, which neglects stretching and shearing in the
middle surface, are quite satisfactory provided that the
deflections are small compared with the thickness. If
deflections are of the same order as the thickness, the
Kirchhoff theory may yield results that are consider-
ably in error and a more rigorous theory that takes
account of deformations in the middle surface should
therefore be applied. The fundamental equations for
the more exact theory have been derived by von Kérméan
(reference 1); a number of approximate solutions (refer-
ences 2 to 7) have been developed for the case of a
rectangular plate. This paper presents a solution of
von Karméan’s equations in terms ‘of trigonometric
series.

Acknowledgment is due to the National Advisory
Committee for Aeronautics and the Bureau of Aero-
nautics, Navy Department, whose research projects on
sheet-stringer panels have provided the impetus and
the necessary financial support for the work presented
in this paper. The author takes this opportunity to
acknowledge also the assistance of members of the
Engineering Mechanics Section of the National Bureau
of Standards, particularly Dr. Walter Ramberg, Mr.
Phillip Krupen, and Mr. Samuel Greenman.

FUNDAMENTAL EQUATIONS
SYMBOLS

An initially flat rectangular plate of uniform thick-
ness will be considered. The symbols have the follow-
ing significance:
plate length in z-direction.
plate length in y-direction.
plate thickness.
normal pressure.
vertical displacement of points of middle surface.
Young’s modulus.

Poisson’s ratio.
z, y coordinate axes with origin at corner of plate.

ER?
T12(1 =)’
F  stress function.

Subscripts k, m, n, p, ¢, 7, 8, and ¢ represent integers.

Tensile loads, stresses, and strains will be given as
positive values and compressive loads, stresses, and
strains will be designated by a negative sign.

T s >oe

tﬂ

flexural rigidity of the plate.

EQUATIONS FOR THE DEFORMATION OF THIN PLATES

The fundamental equations governing the deforma-
tion of thin plates were developed by von Karméan in
reference 1. They are given by Timoshenko (refer-
ence 4, pp. 322-323) in essentially the following form:

OtF O'F | O'F 2 % O
2 2 oo T o E[(axay % by:l
o'w_ p.
az4+2axzay2+ o/ D
+h O*F asz_‘_ﬂ 0_2?_0_ O*F a2w) @
D\ 2 2z*" Oa? Oy bxay oxdy )
where the median-fiber stresses are
, O _oF ,  OF
g ;,;——5'?72) g V—W} T z,y—“—ax—ay‘ (3)
and the median-fiber strains are
) L L1(OF 92’)
©sTE\o Moz
QF O
4 —_
€v E o2 o )
, 204w OF
V™ T T dxdy
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The extreme-fiber bending and shearing stresses are

o Bh (Ow 0w
7T T — A\ 02 Foy?

Eh Q% , ™w
‘T”"=_2(—1;—,u.2_) ST (5)
w ____ Hh O
T T o4 dwoy

GENERAL SOLUTION FOR SIMPLY SUPPORTED RECTANGULAR
PLATE

* A solution of equations (1) and (2) for a simply sup-
ported rectangular plate must satisfy the following
boundary conditions. The deflection w and the edge
bending moment per unit length are zero at the edges
of the plate,

<am2+uaw> 0, when r=0, z=q¢

(ayﬁ-,uaw) 0, wheny 0, y=>

These conditions are satisfied by the Fourier series

— E E : AL Y
= ‘ Wi SID M —=SINTY b (6)

m=1,23... n=123...

The normal pressure may be expressed as a Fourier

series
— e T TY
= E E Drs Sin 7 == sing — @

r=1,2,3... §=1,2,3...

By substitution equation (1) is found to be satisfied if

Py Pt
F=="—5t E E

p=01,2-. =0,1,2 ..
b, , cos p cosg W;J (8)

where D, P, are constants equal to the average mem-
brane pressure in the z- and the y-direction (see equation
(3)) and where

'bp.«:

bE a 5(Bi+By+Bs+By+Bs+ By +B;+Bs-+ By)
2
4(P +¢ 3)

and
—1

p=1 g—1 i
B, Zg é[kt(l’—k) (q—) —k*(q— 11w, W1y, (4

if ¢##0 and p>0
B=0, if =0 or p=0

@ —1
By=3% Skt (k) (1) @ 10 s 00

if g0
.B2:O, if q:O

©

q—1I
Bs:ké‘{ ;[(k +p) (@) (k) (g—1)
+ E+p)q—1)*] Werp),We, -1
if ¢7#0 and p##0
B;=0, if g==0 or p==0
p=l =
B4:k221 ;[kt(l)—k) (E+ @+, We-m. k0>
if ps=0
B4:0, lf p:0
p—l @
352:_;1 ;[lﬁ'('“rq} (p—E)t+E T wr, 14 Wiy .1
' if g0 and p==0
B;=0, if g=0 or p=0
Bﬁzé ;[kt(k-i—p) (t+g)“kz(t+Q)2]wk,zw(k+p),(t-l»a)
if g#0
By=0, if ¢g=0
:2 Z ke (t+q) e+ p)t—E*Clwg, (or gy Wtn) .o
if g=0 or p>0
B;=0, if ¢=0 and p=0
By=2 2 [(k+p)tk(t+9) — (k+p)* -+ Q)" 1wy, W, (i)

F=17=1
if g0 and ps=0
By=0, if g=0 or p=0

Bg=kz:; gwcﬂa) (t4@Vet— (k) 10 ey ey

if p=#0
Bg,:(), if p:()

Equation (2) s satisfied if
Prs=Dw,, ( a2+3 bz) —Phw,, J’

hat

a2b2{ kZ) 2 [((s— )k~ (r—k) b (r—ry, s yWr s

— P yhaw, (s b2

= 3 A1)~ () s 150
‘f‘léo g[(lﬁ'—f"f‘) (t48) —Ftlbs, iy Wiigry. o

; ; [th— (ke~+7) (t+8)PPb ery, (W, 140)
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—k;”l ti:i‘l[(t_*_'g)k— (k-l—l') t]zb(k+r),(t+s)’wk,t
k; g [th+ (r—k) (F+8)1°b ¢—py,iWr, 1400

r

+ i[(t—l—s)/c—{— (r—E)E1b -1y, ct4-yWr, e

k=l t=1

3 i[(s— £) (e —4-7) ~ th1%b s (o iy Wity 1

k=0 =1
+§ SZ‘{[(s~t>k+t(lc+r)]Zb(k+,) W, t} 9)

SPECIFIC SOLUTION FOR SQUARE PLATE WITH
SYMMETRICAL NORMAL PRESSURE (x=0.316)

Equation (9) represents a doubly infinite family of
equations. In each of the equations of the family the
coefficients b,, may be replaced by their values as
given by equation (8). The resulting equations will
involve the known normal pressure coeflicients p,,, the
cubes of the deflection coefficients w,, and the
known average membrane pressures in the 2- and the -
directions 7, and P, respectively. The number of these
equations is equal to the number of unknown deflection
coeflicients w, .

In the solution of the following problems, the first
six equations of the family of equation (9) that do not
reduce to the indeterminate form 0=0 will be used to
solve for the first six deflection coefficients wy, w3,
Wy1, Wsz, Wis and wsi. The rest of the deflection
coefficients will be assumed to be zero. This assump-
tion of a finite number of coefficients introduces an
error into the solution. In each problem the magnitude
of this error will be checked by comparing results as the
number of equations used in the solution is increased
from one to six.

The resultant load must be constant in the xz-direc-
tion and in the y-direction and the boundaries of the
plate must remain straight. The first condition follows
directly from the substitution of equations (3) and (8)
in the following expressions for the total load:

b

Load in x-direction:f ho’ . dy= —"Dp,bh
g (10)

Load in y-direction= f ho' dx=—Dp,ah
0

The second condition was checked by the substitution
of equations (4), (6), and (8) in the following equations:

Displacement of edges in 2-direction

~[Le33 ]

s (e 3]
5 D 2
S e DI
m=1 n=1

Displacement of edges in y-direction

= [ L) ]
= 2}? PE szznw’""

m=1 n=1

(12)

Equations (10) to (12) are independent of z and ¥,
thus showing that the conditions of constant load and
constant edge displacement are satisfied by equations (6)
and (8).

The stress coefficients b, , obtained from equation (8)
for a square plate a=>5 are given in table 1. Poisson’s
ratio was chosen as u=+/0.1=0.316 for convenience of
computation and because it is characteristic of alumi-
num alloys. Substitution of these stress coefficients in
equation (9) gives the equations in table 2 relating the
pressure coefficients p,,, the average membrane pres-
sures in the z- and the y-directions 7, and p,, and the
deflection coefficients w,, .. As an example of the use
of table 2, the first few terms in the first equation are

= = 2
CL4Z71,1+0 37’101,1 DAE Wy PO Win

0:_7r4Eh4 Y 7 A = 5 Y

2
Wiy \Wiys __

3
+0.125 (%) —0.1875 (13)

It will be noted that the equations in table 2 are
cubics and therefore their solution gives three values
for each of the deflection coefficients wy,,. Some of
these values correspond to stable equilibrium, while the
remaining values are either imaginary or correspond to
unstable equilibrium. Fortunately, if the equations in
table 1 are solved by a method of successive approxima-
tion, the successive approximations will converge on a
solution corresponding to stable equilibrium.

EDGE COMPRESSION IN ONE DIRECTION, SQUARE PLATE

The following results apply to square plates loaded
by edge compression in the z-direction as shown in
figure 1.

k]
b3
Q
o>
Y
[ Y
x

DPxahl

%

|

N

|

h

F1GURE L.—Square plate loaded by edge compression in z-direction, ’
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T

[——2— wy,

4 1\ }

P ah) | a ah

N | _—

3 x Weoenter ‘

i / s
W, h
h
2

W3, 3
L
w Ws,1 { h / Wy,5
1:3 9 -
h /h-’/ \ __,f__ Ws,y
~/+/ "1 o h )
o 4 8 12 /6 20 24
Dy a®/Eh?
FIGURE 2.—Values of coefficients in table 3 for deflection function w= E zwm n sin xsmw for a square plate under edge compression. Average compressive
stress in z-direction=1p D2y u=0.316.
60 60
Y Y
a a
/ A B ) |4 A4y
50 p-ah)1C D c[{p=ah 50 peah]] D P ah
: i I ] i
/ A B 4 x A A4 @
r:i: ::i:l
/ A A
40 40
. / . /
St B/ 2 A
Q 30 © 30
/ / / /&
20 / / 20 /
D 7
/ <
/ & ~TE \ c
- N
o /10 20 30 40 o /10 20 30 40
Pz @YER® a?/Eh?
A, (¢’ .82/ Eh?) 4 (compression) B, (¢’ .82/ Eh?) p (compression A, (1" 402/ T2 8, (6" ,ay/Eh? C, (0”03 B2
C, (¢’ ya¥ Eh?) 4 (compression) D, (¢’ ya%/ ER?)  (tension) l—j’ ((T,,T ;’27;,,;,)3'{ E: ((Z, i:2§Eh2))Z ,-; E aa/,/Eh)g)” 7
E, (¢’ ,22/Eh?)¢ (compression) F, (¢ .2/Eh?)p (compression) = = -
s’ 3 g
9 (e’ 2%/ El%)p (tension) H, (o’ % Elf) c (compression F16UurE 4.—Bending stresses at the center and the corner for a squarce plate under
FIGURE 3.—Membrane stresses for a square plate under edge compression. Average edge compression. Average compressive stress in z-dircetion=p,; u=0.316
compressive stress 1n z-direction= px, »=0.316.
The normal pressure p, and the edge compression in w .
. LD e g b on. and . Thesecalculationshavebeenmadefor 16 values
the y-direction p,ah are zero. The method of obtaining
a solution of the equations in table 2 for this case -
4 eon= | of ;L’I increasing by increments of 0.25 from 0 to 4.00;
1,1 . .
s in assuming valu rmini . .
sist as g values of A and determining by the results are given in table 3 and figure 2.
successive approximation from their respective equa- The membrane stress coeflicients were computed
2 wW,s Wsy Ways Wyys, from table 1 and table 3 with the results given in table
23 el 7358, 1y
Ehz’ RRTRTTh 4. The membrane stresses for the corner of the plate,
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the centers of the edges, and the center of the plate were
then computed from equation (3) and equation (8)
At the maximum
load computed, the membrane stress at the corner is

with the results given in figure 3.

almost three times the average compressive stress P..

5

Poisson’s ratio p is assumed to be 0.316. The edge
compressions in the a-direction P.ah and in the y-
direction P,ah are zero. The uniform normal pressure
is p. The expansion of this pressure in a Fourier
series as shown in equation (7) gives pressure coefﬁ&cients

1.0
.8 \
“ Se :

fle.6 I
N
RS T~
BN
NE [ —
313 R e
O [= T
L1
W

2

o 2 4 6 8 10 2 14

Average edge strairn €
Critical strair e

FIGURE 5.—Effective-width curve for a simply supported square plate under edge compression; p=0.316.

The extreme-fiber bending and shearing stresses for
the center and the corners of the plate were computed
from equations (5), equation (6), and table 3 with the
results given in figure 4. At the maximum load
computed, the bending producesa maximum extreme-
fiber stress at the corners of the plate. This stress is
directed at 45° to the x and the y axes and has a value
of about 1% times the average median-fiber compres-
sive stress P..

The ratio of the effective width to the initial width
(defined as the ratio of the actual load carried by the
plate to the load the plate would have carried if the
stress had been uniform and equal to the Young’s
modulus times the average edge strain) was computed
from equation (11) and table 3 with the results given
in figure 5. At the maximum load computed, the
average edge strain is 13.5 times the critical strain and
the ratio of the effective width to the initial width is
0.434.

As a measure of the error resulting from the use of
only six of the equations in the foregoing solution, the
results obtained by using one, three, four, and six of the
equations of the family of equation (9) are given in
table 5. The convergence is rapid and the same result
is obtained with four equations as with six equations.

UNIFORM NORMAL PRESSURE, SQUARE PLATE, EDGE
COMPRESSION ZERO

The following results apply to square plates loaded

by a uniform normal pressure as shown in figure 6.

2
p,szl— 4 p. The method of obtaining a solution
ST ps\ T

of the equations in table 2 for this case consists in

ty
a

X

¥I1GURE 6.—Square plate loaded by a uniform normal pressure p. Edge compres-
sion=0. PR -

1};,1 and determining by successive

assuming values of

approximation from their respective equations the

4
corresponding values of %y whl 2, u;:, L %23’ 3, u;bl' 5,
and w;; 1. These calculations have been made for
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eight values of

u;;, * increasing by increments of 0.50

from 0 to 4.00 with the results given in table 6 and
figure 7.

5 T T T
a—

\

h wiy,y
4 }

Linear theory 7 L /‘{center
l? ; Weenter / h |
A 1

W, n [P

Wi,z Wi W3,3
R h 3
e
% /00 200 300
pa¥Eh*

FI1GURE 7.—Values of coefficients in table 6 for deflection function w‘z Ewm n

. mwk
sin 7Y Z/for a square plate under uniform normal pressure p. Edge com-

pression=0; u—O 316, Linear theory from reference 9.

40
y
a
" 4 B
> c ool 2
’: a
S |
3 L4 B x
20 h
: B
/
10 i
1 L —]
e s ey
e ‘
_ £
0 100 200 00 200 o0
payEh*

A, (o'202/ ER?) 4, (o’ yu?/ Eh?) 4 (compression) B, (¢/ya?/ ERY) 5, (o':0}/ER%)¢ (tension)
C, (¢':02/hE?) 5, (o’ ya?/ER?)c (compression) D, (¢'ya¥ ERY) p, (¢'ya?/Eh?)p (tension)
E, (r=ya?/Eh?) 4
FIGURE 8.—Membrane stresses for a squarc plate under uniform normal pressure p.

Edge compression=0; u=0.316.

The membrane stress coefficients have been com-
puted from table 1 and table 6 with the results given in
table 7. The membrane stresses have been computed
from table 7, equations (3), and equation (8) for the
corner of the plate, the centers of the edges, and the
center of the plate with the results given in figure 8.
The compressive membrane stress at the corner of the

'Eh

plate is seen to exceed consistently the tensile membrane
stress at the center. s

40 T l l
Y
—a—t ,
TA A
30 a D
§ } A Al oz - A
) ‘::*‘F'
© / h —| B~
20
//
|
10—+
//’1 =~ Linear theory
FI YY)
l" 4
o 100 200 300 400 . 500
pa4/Eh4

y (—7°24a% ER?) 4; B, ("2 ER?Y) p, (¢”
(«r ya”/L'h2)A
FIGURE 9.—Extreme-fiber bending stresses at the center and the corner for a square
plate under uniform normal pressure. Edge compression=0; ¢=0.316. Linecar
theory from reference 9.

The extreme-fiber bending stresses have been com-
puted from equations (5), equation (6), and table 6 for
the center and the corners of the plate with the results
given in figure 9. Comparison of figures 8 and 9 shows
that the ratio of membrane stresses to extreme-fiber
bending or shearing stresses increases rapidly with
increasing pressure. The two types of stresses are of
the same order of magnitude at %h =400.

As a measure of the rapidity of convergence, the
results obtained by solving with one, three, and six
equations of the family of equation (9) are given in
table 8. The convergence of the value of the pressure
is rapid and monotonic. In the case of the center
deflection, the convergence, however, is oscillatory.
For small pressures the amplitude of oscillation rapidly
decreases (reference 4, p. 316). For larger pressures
the decrease in amplitude of oscillation is less rapid, as
isindicated by table 8 (b), but an estimate of the asymp-
totic value may be obtained by noting that this value,
if it exists, must lie between the value at any particular
maximum (minimum) and the average of that maxi-
mum (minimum) with the preceding minimum (maxi-
mum). Since the next four equations in the series,

7’w71’wss
g“’mgh TR Th M h

v@* ER?) p; C, (v"z4a?/ ER?) p; D, (¢”.a*/Eh® 4,

w
fc%‘zg the correct value of —22%

CC?L[BT

5 must lie between

2. 704 (the average of 2.666 and 2.743) and 2.743 when
. 4

4—247 At higher values of %(71;;) it may be necess-

sary to use the first ten equations of the family of equa-
tion (9) to get a solution accurate to within 1 percent
for center deflection.
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UNIFORM NORMAL PRESSURE, SQUARE PLATE, EDGE
DISPLACEMENT ZERO

The following results apply to square plates loaded
by a uniform normal pressurt as shown in figure 10.

Y _ﬁyah ’
T T
—ﬁxah:
- vv o
T l | | l J T
-pyakh
P Al ! Dxali
P2 dd ) ) s

\
h
FI1GURE 10.--8quare plate loaded by & uniform normal pressure p and by edge forces
—p.ah and —pyah sufficient to make the edge displacement zero.
Poisson’s ratio u is assumed to be 0.316. The average
edge tensions in the z- and y-directions —p, and —9p,

are obtained from equations (11) and (12) by setting

the edge displacement equal to zero.
.-'ﬁma2 ﬁvaz__«z[z. 2 2<wm.n>2
Tl 7 P A
DA DTS z(wm,n>2
w52\,
The average tensions —p, and —7, are then substi-

tuted in the equations of table 2, a value of _'u% is

assumed, and the corresponding values of
pat wis Wsy

7

are determined by successive approximation from their
respective equations. These calculations have been
W1 - . .o

=, Increasing by increments of
0.50 from 0 to 2.00 with the results given in table 9 and
figure 11. ‘

The membrane stress coefficients have been com-
puted from table 1 and table 9 with the results given in
table 10. The membrane stresses have been computed
from table 10, equations (3), and equation (8) for the
corner of the plate, the centers of the edges, and the.
center of the plate; the results are given in figure 12.:

made for four values of

20 =
/6
Ly
g
A B A
| s
. 12r—alC D C
=
N vIA B Al x 8
] #:
° 8 h
i
/ T
T
o /00 200 00
pai/Eh4

A, (o203 EWY) g, (¢'ya? Eb?) 5 (tension) B, (o’ 202/ ER?) p, (0’ ya2/ Eh?) p (tension)
C, (¢':02/Eh?) B, (¢’ ya? Bl ¢ (tension) D, (o’ ya?/ Eh?) 4, (o’ ya?/ ER?) 4 (tonsion)
FIGURE 12.—Membrane stresses for a square plate under uniform normal pressure p

h Edge displacement=0; u=0.316.
2.0 |~
Wi, | L1
R3]
/ |, Weentor
/.6 — — 4
Lirneor theory / /‘/
|
|
W conter
/Z_,' h //
‘ 12 /
wm,n
Zman ] P
R -Bxah ﬂf" D )‘-ﬁxfzh
N / 5
4 /
W3,y
/ W3, wy,s (R Yis Ws,y
')T{;T ! Ron
S I R N - H il
-0 40 - 80 120 160 200 240 280
pait/Eh4

mw¥ . N,

FI1GURE 11,—Values of coefficients in table 9 for deflection function w=,’2n" %L Woen,n SiD —a—sm—ay for a square plate under uniform normal pressure p. Edge

displacement=0; p=0.316. Linear theory from reference 9.

476720—42——2
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The tensile membrane stress at the center of the edge
is seen to be slightly greater than the tensile membrane
stress at the center.

The extreme-fiber bending stresses have been com-
puted from equations (5), equation (6), and table 9 for
the center and the corners of the plate with the results
given in figure 13. Comparison of figures 12 and 13
indicates that bending and membrane stresses at the
center of the plate are approximately the same at the
maximum loads considered.

20
16— ¥
k——a-——
TA B 4
alC D C
/2—‘
% 4 B 4 =z A
ig Linear theory / //B
s ‘/‘I B
4 /
%‘/[./ﬁem‘ theory
‘ @ D E
) 100 300 300
payEh*

A, (¢":YEh?)p, (a8 ER) D B, (+"208YER?) 4, C, (+"28% Eh%) 5

D, (¢":2%EW) B, (aya?Eh?)s E. (¢":a%Eh?)c, (o"ya? Eh?) ¢
FIGURE 13.—Extreme-fiber bending stresses at the center and the corner for a square

plate under uniform normal pressure. Edge displacement=0; p=0.316. Linear
theory from reference 9.

As a measure of the rapidity of convergence, the re-
sults obtained by using one, three, and six equations of
the family of equation (9) are given in table 11. The
convergence of the value of the pressure is both rapid
and monotonic. In the case of the center deflection,
the convergence is oscillatory. For small pressures,
this oscillation decreased rapidly (reference 4, p. 316).
For larger pressures the decrease in amplitude of oscil-
lation is less rapid, as is indicated by table 11 (b), but
an estimate of the asymptotic value may be obtained
by noting that this value, if it exists, must lie between
the value at any particular maximum (minimum) and
the average of that maximum (minimum) with the
preceding minimum (maximum). Since the next four

. Wiy Wrg Was Wsa . .
equations for ilf’ —}:”—1» %, —7‘:’73 will cause a decrease in

wcenter wcanter

» the correct value of must lie between

1827 (average of 1.807 and 1.846) and 1.846 when

Eh4 —278.5.

sary to use the first ten equations of the family of equa-
tion (9) to get a solution accurate to within 1 percent
for center deflection.

4
At higher values of % it may be neces-

COMBINED UNIFORM LATERAL PRESSURE AND EDGE
COMPRESSION IN ONE DIRECTION, SQUARE PLATE
The following results apply to square plates with
simply supported edges’ loaded by a uniform normal
pressure p and by edge compression in the z-direction
as shown in figure 1. '
Poisson’s ratio u is again assumed to be 0.316. The
edge compression in the y-direction P,ah is zero. The
method of obtaining a solution of the equations in
4
table 2 for this case consists in assuming values of é—;}

L1 gnd determining by successive approximations

and —* 5

from theirrespective equations the corresponding values of
D0 Wi,z Ws,1 Wi,z Wi,s d .1,

ERR R R R h AT
4
have been made for two values of g%ﬁ 2.25 and 29.5

These calculations

1

wy P.0°
and for five values of ——h~'» and hence of FoRE? corre-

4 .
sponding to each value of IZZ)’—(;;:‘* ; the results are given in

table 12.

The ratio of effective width to initial width has been
computed from equation (11) and table 12 with the
results given in the last two columns of table 12 and in
figure 14. The reduction in effective width of square
plates due to the addition of lateral load is seen to be

. pat
appreciable for Eﬁz>2'25'

/0 } I ,[,,.,4.,_
_ ————a _
/\ Pprah E P IIT‘ Prah
I T
! 2.5 \
.8
pat/Eh4=0
'Q‘DI'Q \\\
o .6 ——
35 = 29.5
2=
A
B
NN /
W
2 /

Q / 2 3 <+
Average edge stroin

(Critical siraim),.,

FiGURE 14.—Effect of normal pressure on effective width of a square plate loaded by
edge compression,

As a measure of the convergence, the results obtained
by using one, three, four, and six of the equations in
table 2 are given in table 13. The convergence is rapid
and monotonic.
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SPECIFIC SOLUTION FOR A RECTANGULAR PLATE
(a=3b) WITH NORMAL PRESSURE SYMMETRICAL TO
AXES OF PLATE

The first two equations of the family of equation (9)
for the case of a rectangular plate whose length is three
times its width (¢=3b) are, for x=0.316,

bt w Db w b w,
R

0. 0632(wll —0. 1873(w‘ N 'w31_| 0. 267@011(’103 1>

(14)
Pyb Ws1
=ER T

pzb ’wa 1

b* W
PPar () 370t — Lo

T ERt h

Wi\ W1 Y Ws,1 wy\*
—0.0625<T> +0.267< 7 > 7 +0.125< 7 >

In the previous solutions a close approximation was
center<1 FOI‘

this reason in the following problem only the first two
equations, as given by equation(14), will be used and the

obtained with one equation as long as

deflections will be limited to values of w“"‘”<1 It

should be noted that the two equations of (14) will be
adequate only as long as the normal pressure can be
described by the first two terms of equation (7):

.o L wY . 3wx . owY
=p;,; sin — sin 5~ sin ==~ sin —*
P=P1a P b + D3, P b
For more complicated pressure distributions as well as

wccn ter

for 2 | more equations of the famlly of equation

(9) should be used.

The following results apply to rectangular plates
(a=3b) loaded by a uniform lateral pressure p and by
edge compression actmg on the shorter edges as shown
in figure 15.

>

IES
)

-

pebh

T
XYY YYYVYYY

Aoy | rIIIH\l b

FiGURE 15—Combined normal pressure and edge compression for a rectangular
plate (@=3b).

Poisson’s ratio u is taken as 0.316. The edge com-
pression in the y-direction P,ah is zero. The coefli-
cients p,s in the Fourier series for the pressure as

given in equation (7) equal ( > p. The method of

obtaining a solution of equatlons (14) for this case con-

Ws,1

. . b*
sists of assuming values of %pand o

and determining

by successive approximation from their respective
equations the corresponding values of w}l‘ and pézz

These calculations have been made for 13 values of EZ‘*

W1
h
of effective width to initial width was computed from
equation (11) and table 14, with the results given in
the last two columns of table 14 and in figure 16.

and with the results given in table 14. The ratio

Eb‘_
ERe= 0

/ 2251
/ 4504
8

1.0

17
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4 | () N L
. T 1

Pebh —*-@i‘ﬁ—/w&—— pzbh

h

o - A4 .8 1.2 1.6
Average edge strain
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FIGURE 16.—Effect of normal pressure on effective width of a rectangular plate
(a=3b) loaded by edge compression on the short sides.

The reduction in effective width of rectangular plates
(a=3b) due to the addition of lateral load is seen to
be less than in the case of square plates (fig. 14).

COMPARISON WITH APPROXIMATE FORMULAS
EFFECTIVE WIDTH

Approximate formulas for effective width have been
derived in references 2, 3, 6, and 7.

Marguerre (reference 2) expresses the deflection for
a square plate by a series similar to equation (6). He
limits  himself, however, to w;;, ws;, and w;3; and in

his numerical work requires that w; ;= —% ws,; and that

u=0. His stress function corresponds to the first
terms of equation (8). He uses the energy principle to
determine the values of w,; and w;,; instead of the
differential equation given as equation (2) in the present
work. Marguerre’s approximate solution is given as
curve ¢ in figure 17, It is evident that, even though
Marguerre has limited the number of his arbitrary
parameters to two and has taken u=0, his results are
in excellent agreement with the results obtained in the
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present paper. Marguerre’s approximate formula b,/b

=3/e. /e is given as curve b. 'This curve checks within
about 7 percent with the exact results.

Bengston (reference 3) assumes a sinusoidal deflection
equivalent to the first term in equation (6) in his solu-
tion for a square plate. He then chooses his displace-
ments so that the strain at the supported edges is uni-
form but, in order to do so, he violates equation (1).
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The well-known formula of von Kérman (see refer-
ence 7) be/b:w/ec,/e is plotted as curve a in figure 17.
It is in good agreement with the effective widths ob-’
tained in this paper for small values of the ratio /e,
but is about 20 percent low for efe,,—=4.

Cox (reference 6) in his solution for the simiply sup-
ported square plate uses energy methods together with

the approximation that the strain is uniform along the

1.0 \
s \
e- Exact
@ 3 i
Il < ¢
~ 6 \ < b
° : \ {
3= \ ..a \\
D £Exact ard ¢
§ :6 d \‘\t /
g2 BN e
e ° I S I e el
9 ,,éﬁ‘
m ~
2
o 2 4 8 /0 /2 14

Average edge strain €

Critical strair

€or

Ficure 17.—Effective-width curves for a simply supported square plate according to different sources.

Curve Source
bo_ fecr
a reference 7, ——J .
. be_3fecs
b approximate formula of reference 2, =V
c approximate solution of reference 2.
d solution of reference 3.
2 €er
e formula of reference 6, Z’-=0.09+0.80 s—?
Exact derived from present paper.

Owing to the method of choosing the displacements,
however, the resulting errors should be small. The
energy principle is then used to obtain the solution.
In order to take account of secondary buckling, it is
assumed that buckling of % and )% the original wave
length will occur independently and that the resulting
effective width will be the product of each of the separate
effective widths. Finally, an envelope curve to the
effective widths thus constructed is drawn. This curve
is given as curve d in figure 17. Tt differs less than 7
percent from the effective widths obtained in this paper.
The fact that Bengston’s values are lower indicates that
the increased strength which should result from the con-
ditions of uniform strain at the edges is lost due to the
approximate method of taking account of secondary

buckling.

entire length of narrow element of the panel. The
effective-width curve thus obtained is plotted in figure
17 as curve e. It gives effective widths 10 to 20 percent
below those obtained in this paper.
DEFLECTION UNDER LATERAL PRESSURE

Navier’s solution for the simply supported square
plate with small deflections (linear theory), given in
reference 9, is included in figures 7, 9, 11, and 13. It
is seen that for small deflections the solution given in
this paper is in agreement with Navier’s linear theory.

Kaiser (reference 5) converted von Karman’s differ-
ential equations into difference equations and calcu-
lated deflections and stresses for a square plate under
constant pressure assuming simple support at the edges
He obtained

. Weon,
with zero membrane stress. —eenter . ..
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4
2.47 for %2118.8. This center deflection is about

25 percent, higher than the curve in figure 7; this differ-
ence is probably due to the fact that Kaiser allows dis-
tortion of the edges of the plate. The membrane
stresses calculated by Kaiser are about one-fifth as
large as those given in the present paper. This fact,
as well as a comparison of figures 8 and 12, indicates the

large influence of edge conditions on the membrane
stresses.

COMPARISON WITH EXPERIMENTAL ‘RESULTS
EFFECTIVE WIDTH

Extensive experiments on two aluminum-alloy sheet-
tringer panels 16 inches wide, 19 inches long, and 0.070

a

11

specimen the agreement is excellent up to stresses
for which yielding due to the combined bending and
membrane stresses was probably taking place. In the
case of the 0.025-inch aluminum-alloy specimen the
observed effective width exceeded the calculated values
for e/e.,< 7 but the agreement was excellent for /e, >7,
which appeared to be large enough to reduce the effect -
of the torsional stiffness of the stringers as a factor in
the edge conditions.

DEFLECTION UNDER LATERAL PRESSURE

Kaiser (reference 5) has conducted a carefully con-
trolled experiment on one simply supported plate. In
this experiment, as in Kaiser’s theoretical work, the
edge conditions are such that the membrane stresses at

. i N
& Test orr 0.070-inch 245-T alc/ad oluminum-alloy ponel. __ |
° Strirngers gpproximated simple support.
o Jest on 0.025-inch 245-T aluminum=-alioy panel.
a Stringers provided restraint against rofatiorn.
N v £dge stress exceeds 25,000 /b/sq ir.
QO -y
S -
£ 4 \
NS % °
% i —~
2R e
N el
16 ‘g ° M\U\\o‘
L8 4
Wy
.2
9] 2 4 & 8 10 /2 14
Average edge strair €

Critical strairn

FI1GURE 18.—Comparison of computed effective width and experimental results from reference 8.

6(‘7‘

The critical strain is the eomputed critical strain for simply supported

square plates.

and 0.025 inch in thickness are reported in reference 8.
The sheet of the 0.070-inch panel was 243-T alclad
aluminum-alloy and the 0.025-inch panel was 245-T
aluminum-alloy sheet. The panels were reinforced by
stringers (0.13 sq in. in area) spaced 4 inches on centers,
Deflection curves measured at the time of the experi-
ments indicated that in the panel having 0.025-inch
sheet the torsional stiffness of the stringers was large
enough compared with the stiffness of the sheet to
provide appreciable restraint against rotation at the
edges; in the case of the 0.070-inch alelad aluminum-
alloy panel the stringers approximated a condition of
simple support.

The effective widths resulting from these experiments
are plotted in figure 18 using for e, the buckling strain
of a simply supported square plate. It is evident that
in the case of the 0.070-inch alclad aluminum-alloy

the edge are zero, The initial deflections obtained by -
Kaiser are in agreement with the results in this paper.
At large deflections, however, the fact that the mem-
brane stress at the edge of the plate was zero in the
experiment causes the measured deflections to exceed

by appreciable amounts the deflections calculated in
this paper.

NaTioNAL BUREAU OF STANDARDS,
WasHingroNn, D. C., May 27, 1941.

REFERENCES

1. von Kirmidn, Th.: Festigkeitsprobleme im Maschinenbau,
Vol. 1V of Eneyk. der Math, Wiss., 1910, p. 349.

2. Marguerre, Karl: The Apparent Width of the Plate in Com-
pression. T. M. No. 833, NACA, 1937.



12

3. Bengston, Henry W.: Ship Plating under Compression and
Hydrostatic Pressure. Trans. Soe. Naval Arch. and
Marine Eng., vol. 47, Nov, 1939, pp. 80-116.

4. Timoshenko, S.: Theory of Elastic Stability.
Book Co., Inc., 1936.

5. Kaiser, Rudolf: Rechnerische und experimentelle Ermittlung
der Durchbiegungen und Spannungen von quadratischen
Platten bei freier Auflagerung an den Réndern, gleichmis-

MeGraw-Hill

REPORT NO. 737—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

sig verteilter Last und grossen Ausbiegungen.
M., Bd. 16, Heft 2, April 1936, pp. 73-98.

6. Cox, H. L.: The Buckling of Thin Plates in Compression..
R. & M. No. 1554, British A. R. C., 1933.

7. von Kdrmén, Theodor, Sechler, Ernest E., and Donnell, L., H.:
The Strength of Thin Plates in Compression. A. S. M. E.
Trans., APM-54-5, vol. 54, no. 2, Jan. 30, 1932,.pp. 53-57.

8. Ramberg, Walter, McPherson, Albert E., and Levy, Sam:
Experimental Study of Deformation and of Effective Width

Z. f. a. M.

Tasre 1.—EQUATIONS FOR THE STRESS COEFFICIENTS IN EQUATION (8) FOR A SQUARE PLATE (a=bh)
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in Axially Lioaded Sheet-Stringer Panels.
NACA, 1939.

TaBLE 2.—COEFFICIENTS FOR SQUARE PLATE IN THE FIRST SIX EQUATIONS OF THE FAMILY OF EQUATION (9)

T. N. No. 684,

'9. Timoshenko, S.: Theory of Plates and Shells.

Book Co., Ine., 1940, pp. 117-120.
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Tasre 2.—Continued
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EQUATION (9)—Concluded
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TasrLe 4.—VALUES OF COEFFICIENTS IN STRESS FUNCTION OF EQUATION (8) FOR SQUARE PLATE
UNDER EDGE COMPRESSION
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.00

.00

.01

.03

.07

.12

.20

.32

.50

77

3.99

6.15

16m3b4 0
EhS

.00

.00

.00

.01

.03

.06

.13

.42

.68

1.08

1.60

.30

6.39

4n2b2’2
Eh®

.00

.00

.00

.01

.04

.09

.19

.34

.57

.89

1.32

1.90

2.64

4.74

8.07

36ﬂ2b0 ,6
EhS

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.01

.05

.10

.17

.35

.64

2
361 bs’o
Eh®

.00

.00

.00

.00

.00

.00

.00

.00

.01

.02

.06

.11

.20

.35

.59

.98

16n2b2’4
¥h3

.00

.00

.00

.00

.00

.00

.01

.03

.08

.17

.33

.58

.99

1.56

2.38

16ﬂ2b4 , 2

Eh®

.00

.00

.00

.00

.00

.00

.00

.01

.04

.11

.23

.44

.76

1.92

2.81

4.10

36n2b2’6
Eh?

.00

.00

.00

.00

.00

.00

.00

.00

.00

.01

.02

.03

.06

W11

.19

.32

.54

36m3bg

EhS

.00

.00

.00

.00

.00

.00

.00

.00

.01

.02

.04

.08

.17

.33

B9

1.87

16730y 4
Eh®

.00

.00

.00

.00

.00

.00

.00

.00

.00

.01

-.03

-.04

-.086

-.08

-.11

-.11

-.02

6412bg g
Eh?

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.01

.01

2
64 ba’o
Eb3

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.01

.01

.00

36n2b4’6
En®

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

-.01

-.02

-.05

~.10

-.20

2
367 b6,4
En®

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

-.01

-.01

-.03

-.05

-.09

-.15

-.28]

64ndbg
En®

.00

.00

.00

.00

00|

.00

.00

.00

.00

.00

.00

.00

.00

.01

.01

.01

-.01

64n3by g

Eh3

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.01

.01

.04

.10

Others

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00
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TasrLe 3.—VALUES OF COEFFICIENTS IN DEFLECTION
FUNCTION OF EQUATION (6) FOR SQUARE PLATE
UNDER EDGE COMPRESSION

[n=0.316]
D@’ Wi, 1 W3 ws, 1 w3, 3 w8 Ws, 1 W center
Eh? h h h h h h
3. 66 0 0 0 0 0 0 0.000
3.72 .25 . 000109 . 000164 . 000000 . 000000 000000 . 250
3.96 .50 . 000848 . 001308 .000012 | .000001 000001 . 498
4.34 .75 . 00275 . 00434 . 000086 . 000005 000009 . 743
4.87 1.00 . 00615 .01043 . 000360 . 000017 000036 .984
5. 51 1.25 .01127 . 0203 . 001063 . 000044 000104 1,220
6. 30 1. 50 . 0181 . 0350 00257 . 000092 | .000241 1. 450
7.22 1.75 . 0267 . 0561 00541 . 000166 000484 1.673
8.24 2.00 . 0370 . 0846 01040 000284 000879 1,889
9.38 2.25 . 0493 . 1208 0184 . 000467 00143 2,101
10. 61 2.50 . 0635 . 1670 0307 . 00082 00215 2.303
11.99 2.75 . 0790 . 226 0488 00145 00313 2. 498
13.48 3.00 . 095 . 299 0743 00273 0041 2. 687
14,97 3.25 L112 . 384 107 00483 00510 2.871
16.79 3. 50 129 . 493 151 00893 00565 3.044
18.77 3.75 138 . 626 206 0161 . 00392 3.212
21.45 4.00 124 808 287 0303 —. 0021 3.376

TasLe 5—CONVERGENCE OF SOLUTION FOR EFFEC-
TIVE WIDTH OF A SQUARE PLATE UNDER EDGE
COMPRESSION AS THE NUMBER OF EQUATIONS
OF THE FAMILY OF EQUATION (9) USED IN THE
SOLUTION IS INCREASED

[1£=0.316]
Effective width
Initial width
Average edge strain -

Critical strain Using one| Using |Usingfour| Using six

from  ithree from from from
equation | equation | equation | equation

© ) © 9)

1.00 1. 000 1. 000 1. 000 1. 000

1.67 .97 L 797 . 797 797

® 7.01 . 570 . 535 . 525 . 525

13. 50 . 538 . 480 .434 . 434

TasLe 6—VALUES OF COEFFICIENTS IN DEFLECTION
FUNCTION, EQUATION (6), FOR SQUARE PLATE
UNDER UNIFORM NORMAL PRESSURE p

[Edge compression=0; u==0.316]

pat w1 w13 Wi W3,3 w15 Ws,1 W geuter
Iht h B B RR| TR
0 0 0 0 0

12.1 . 500 . 00781 . 000814 000644 . 486

29.4 1. 000 02165 . 00254 00156 .062

56.9 1. 500 . 0447 . 00666 00303 1.424

99,4 2. 000 . 0776 . 0152 00524 1. 870
161 2. 500 . 1195 . 0299 00831 2. 307
247 3. 000 . 167 . 0516 0123 2.742
358 3. 500 .221 . 0813 0175 3.174
497 4. 000 | 282 116 0236 3. 600

TasLe 7~—~VALUES OF COEFFICIENTS IN STRESS
FUNCTION, EQUATION (8), FOR SQUARE PLATE |
UNDER UNIFORM NORMAL PRESSURE p

[Edge compression=0; p=0.316]

4
479,29 | 1672bo4 3672hg,0 | 1672b2 4 | 367238 3672bs .6
pat p? Eh? 4%y 9 Eht Eh? Eh? 16m2b4 4 Eh? Othor
Pt 3 2 s
Iht 4w2bs,0 | 16w%hs,0 B 36w2bo6 | 16m2hy,2 | 36m2hs,2 Eh 36205 4
Eh? Eh? Eh? Eh? Eh? Eh?

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12.1 30 0L .02 .00 .00 00 00 00 .00
20.4 | L19 05 .10 .00 01 00 00 00 .00
56.9 2.63 16 .31 .01 05 00 00 00 .00
99.4 | 4.59 39 .72 .04 13 01 .00 00 .00

161 7.06 77 | 1.35 .08 35 03 | —.01 —.01 .00
247 10. 01 1.34 2.21 .16 74 06 —.03 —. 02 .00
358 13,37 2.16 | 3.35 .28 1.39 14 | —.05 | —.04 .00
497 17.11 3.27 4.80 .49 2.30 27 —. 08 —.07 .00

Tasre 8.—CONVERGENCE OF SOLUTION FOR pat/Eh
AND W center/h OF A SQUARE PLATE UNDER UNI-
FORM NORMAL PRESSURE AS THE NUMBER OF
EQUATIONS OF THE FAMILY OF EQUATION (9)
USED IN THE SOLUTION IS INCREASED

[Edge compression=0; p=0.316]

(a) Pressure
pa‘{Eht
¥
h Using one | Using three | Using six
equation equations equations
0 0. 00 0. 00 0.00
1 29.9 29.4 29. 4
3 271 249 247
4 572 516 501
(b) Center deflection
w eeutar/h
Wi
b Using one | Using three | Using six
equation equations equations
0 0. 000 0. 000 0. 000
1 1. 000 . 957 . 962
3 3. 000 2. 666 2.743
4 4. 000 3.436 3. 600
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TaBLE 9.—VALUES OF COEFFICIENTS IN DEFLECTION | Tasis 11.—CONVERGENCE OF SOLUTIONS FOR
FUNCTION, EQUATION (6), FOR SQUARE PLATE pat/Eht AND wWeenier/h OF SQUARE PLATE UNDER |
UNDER UNIFORM NORMAL PRESSURE »p UNIFORM NORMAL PRESSURE AS THE NUMBER

[Edge displacomente0; x=0.316] OF EQUATIONS OF THE FAMILY OF EQUATION (9)
USED IN THE SOLUTION IS INCREASED
pat Wi,y | W3 Ws, ws, 3 Wi, 5 Ws, 1| Weenter [Edge displacement=0; p=0.316] 2
En¥ 3 B Th B R B
) (a) Pressure
0 0 0 0 0 0
14.78 . 500 . 0089 . 00095 . 00077 . 485
51. 4 1. 000 . 0283 00366 . 00252 .952 pat/Eht
132.0 1. 500 . 0595 00965 . 00585 1. 402 w1
278.-5 2. 000 . 0978 0193 . 0109 1. 846 —
h Using one | Using three | Using six
equation equations equations

Tase 10.—VALUES OF COEFFICIENTS IN STRESS 0.000 0.00 0.00 0.00
FUNCTION, EQUATION (8), FOR SQUARE PLATE - 500 14.83 14.78 14.78
UNDER UNIFORM NORMAL PRESSURE p Loo 1 aae 550 Bye

[Edge displacement=0; p=0.316] 2.000 0.2 278.5 8.5
(b) Center deflection
- 472y, o 1672y, o (3672bs, 0 |1672by, 2 36w2bs, 2
_ P2’ The Eh? Eh? Eh? IR
pat | ER 4riby, 2 16724, 4 Others Weantar/h
IZht — Eh? Eh? w1
Pyt | 4mibo, o 16m2bq, 4 |36m2bo, 6 116wibs, 4 36mhs, 6 b Using one | Using three | Using six
Eh? Eh? Eht Eh? Eh? Eh? equation equations equations
0 0 0 0 0 0 0 0 0 0 0. 000 0. 000 0. 000 0. 000
14.78 . 451 . 299 .021 . 010 . 001 .002 | .000 . 000 . 000 . 500 . 500 . 482 . 485
51.4 1. 816 1.174 .132 . 066 . 006 L019 | —.002 | —.002 . 000 1.000 1. 000 . 944 . 952
132.0 4.12 2. 59 .41 .21 .02 .07 -, 01 —.01 .00 1. 500 1. 500 1.382 1. 402
278.5 7.38 4.53 .89 .47 .06 .23 .00 .02 .00 2.000 2.000 1.807 1. 846

TasLg 12—COMBINED UNIFORM NORMAL PRESSURE AND EDGE

A SQUARE PLATE

COMPRESSION IN ONE DIRECTION FOR

[u=0.316]
wy, 1 D02 wy, 3 w3, 1 wa, 3 Wy, § ws, 1 Effective width Average edge strain
R Eh? R B A R h Initial width (Critical strain)p =0
@ 2% _995
Eps ™
0.10 0.00 0.00134 0. 00134 0. 000137 0. 000119 0. 000119 0. 000 0. 0034
.20 1.87 . 00142 . 00171 . 000148 . 000120 . 000129 .973 . 526
.40 2.93 . 00178 - 00241 . 000164 - 000120 . 000135 . 935 . 855
. 60 3.48 . 00276 . 00400 - 000250 . 000120 . 000142 . 887 1.07
.80 3.98 . 00454 . 00697 . 000309 . 000126 . 000155 . 832 1.30
) P%_ %5
Eht
1.00 0.00 0. 0216 0. 0216 0. 00252 0. 00155 0. 00155 0. 000 0.34
1.30 1.93 . 0272 . 0321 . 0037 . 00159 . 00173 -479 110
150 3.04 . 0325 0413 . 0050 . 00162 . 00186 . 520 1.60
1.70 4.16 . 039 . 055 - 0068 -002 . 002 . 536 2.12
2.00 578 . 050 . 081 .011 . 002 . 002 . 635 2,96
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TapLe 13.—CONVERGENCE OF SOLUTION FOR EFFEC-
TIVE WIDTH OF A SQUARE PLATE UNDER COM-
BINED UNIFORM LATERAL PRESSURE AND EDGE
COMPRESSION AS THE NUMBER OF EQUATIONS OF
THE FAMILY OF EQUATION (9) USED IN THE
SOLUTION IS INCREASED

[u=0.316]
Effective width pat _
@) “Initalwidth " 0oR TR 22
W1 Using one | Using three { Using four Using six
h equation equations equations equations
.10 . 000 .000 .000 .000
.20 .974 .974 .974 .974
.40 . 935 . 935 . 935 . 935
.60 . 887 . 887 .887 . 887
.80 [ .832 .832 .832 .832
Effective width pat_
®) teTwiam - TR e 208
Kan) Using one | Using three | Using four Using six
h equation equations equations equations
1.00 . 053 .000 . 000 .000
1.30 . 493 .479 . 479 .479
1. 50 .536 . 520 . 520 .520
1.70 .551 . 536 . 536 . 536
2 . 556 . 5356 .535 . 535

19

Tapie 14—COMBINED UNIFORM LATERAL PRESSURE
p AND EDGE COMPRESSION IN THE DIRECTION
OF THE 2-AXIS p.bh FOR RECTANGULAR PLATES

[a==3b; x=0.316]

pbt p.b2 w1, 1 w3, 1 Effective width | Average edge strain
Eht Eh? [ h Initial width (Critical strain) p=,
0.00 3.66 0.00 0.00 1.000 1,00
.00 3.72 .00 .25 .978 704
.00 3.96 .00 . 50 .928 1.17
.00 4,34 .00 .75 . 863 1.37
.00 4.87 .00 1.00 .798 1.67
2.25 .00 .313 . 0365 . 000 1. 004
2.25 1.02 .344 0500 . 980 .276
2.25 2.47 . 405 1000 . 989 .683
2.25 3.69 443 . 300 . 962 1.05
4. 50 .00 . 583 0797 .000 . 015
4. 50 77 .620 .100 . 926 .233
4.50 2.68 . 739 .200 . 957 . 765
4. 50 3.58 .800 . 300 L94T 1.03
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